An alternative structure rescues failed semantics? Strong global expectancy reduces local-mismatch N400 in Chinese flexible structures

Xiaoming Jiang a,b,c, Xiaolin Zhou a,b,c,d,e, *

a Institute of Linguistics, Shanghai International Studies University, Shanghai, China
b Department of Psychology, Tongji University, Shanghai, China
c School of Psychological and Cognitive Sciences, Peking University, Beijing, China
d Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
e PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China

ARTICLE INFO

Keywords:
Adjective
Syntactic hierarchy
Active prediction
Motivation
N400
Mandarin Chinese

ABSTRACT

During comprehension of a hierarchical structure, semantic integration between sequential, mismatched sentential constituents does not proceed when the later word in the sequence (e.g., the noun in the verb + classifier + noun) can be assigned an alternative role in the sentence (e.g., as a modifier of a subsequent object noun) (Zhang et al., 2011). Using electrophysiological measures, we examined how the availability of an alternative structure and whether the reader is motivated to generate an alternative structure affect semantic integration in a hierarchical structure. The same set of sentences was employed in three experiments in which the semantic congruency between the adjective and the object noun in the local structure and the sentential-contextual expectancy towards a noun were manipulated simultaneously. The reader’s motivation was manipulated by tasks in which they made semantic acceptability judgment (Experiment 1), passively viewed sentences for comprehension (Experiment 2), or actively predicted the upcoming word and monitored the compatibility between the anticipated and the actual input (Experiment 3). Stronger contextual expectancy reduced N400 responses to the object noun regardless of semantic congruency, indicating that strengthening the constraints of an alternative argument decreased the effort of semantic integration between incompatible local constituents. Relative to weaker expectancy, the incongruent noun preceded by a stronger expectancy context elicited reduced N400 responses when no active prediction was demanded but showed equal amplitudes when such a demand was high. These findings demonstrate that the semantic failure in a flexible structure is likely to be resolved by the comprehender’s motivation to generate an alternative structure based on the active use of contextual expectancy information, thus highlighting the “role-dependent semantic processing” during sentence comprehension.

1. Introduction

Dynamic sentence processing involves cognitive operations at multiple linguistic levels (e.g., lexical, semantic/pragmatic and structural) that act in concert to incrementally form a contextual representation, which prepares for the interpretation of upcoming input (Federmeier et al., 2007; Jiang et al., 2013; Kutas and Federmeier, 2000; Wang et al., 2009; Ye et al., 2007). When integrated into the established representation, the incoming information updates (or revises) the initially built representation (Brouwer et al., 2012; Nieuwland and Van Berkum, 2006; Zhang et al., 2011). One important question for the syntax-semantics interface research is how the structural complexity, ambivalence or failure could interfere with the semantic processes (e.g., Federici et al., 2004; Hahne and Friederici, 2002; Hagoort, 2003; Kolk et al., 2003; Wang et al., 2013; Yang et al., 2015; Ye and Zhou, 2008; Yu and Zhang, 2008). Findings concerning this issue may shed lights on the nature of how structural and lexico-semantic factors interact during dynamic sentence comprehension (Steinhauer and Drury, 2012).

A recent group of studies addressed how semantic processes are constrained by structural hierarchy/flexibility in a hierarchical sentence structure, as in (1), in which the object noun (textbook) is constrained by both a local determiner/classifier (ben_book-classifier) and a distant verb (recommend) at a higher level. A unique feature of this type of structure is that the object noun is grammatically ambiguous, meaning that the textbook is also licensed to become the modifier of a direct object, as in (2), even when the local classifier is kept the same, i.e., using ben_book-

* Corresponding author. Institute of Linguistics, Shanghai International Studies University, 550, West Dalian Road, Shanghai, 200083, China.
E-mail address: xz104@pku.edu.cn (X. Zhou).

https://doi.org/10.1016/j.neuropsychologia.2020.107380
Received 16 September 2019; Received in revised form 4 February 2020; Accepted 5 February 2020
Available online 19 February 2020
song. (The teacher recommended the song that the textbook mentioned.)

X. Jiang and X. Zhou indicate that its preceding noun or a relative clause functions as a modifier of example and the rest of the examples.

The teacher recommended one *ben* textbook. (The teacher recommended a textbook).

The teacher recommended one *shou* textbook mentioned DE1 song. (The teacher recommended the song that the textbook mentioned.)

Yet it is unclear how the availability of an alternative structure (given the structural flexibility) on the object noun affects the semantic process. It is hypothesized that the local semantic incongruence (e.g., in *one* textbook) may serve as a contextual cue for triggering the flexibility in structural (re-)parsing, especially in languages that lack case marking (i.e., the grammatical marker that distinguishes direct object from modifier, Wu et al., 2014, 2018). The current study aims to address how the local combinatorial process (e.g., in *a red apple* embedded in a hierarchical structure is affected by the availability of such an alternative structure and by the reader’s active use of this alternative. The structural availability was manipulated by using different sentences with differential contextual expectancy towards a word other than the mismatching object noun. The reader’s motivation during sentence reading was manipulated by placing different task demands (whether to passively view or actively predict the upcoming word) on the reader. We first review neurocognitive findings (mainly with event-related potentials) concerning semantic processes on structurally ambiguous and non-ambiguous words before we move on to the current experimental design.

1.1. Resolving semantic failure on a structurally-ambiguous word

Wu et al. (2014) embedded a structurally ambiguous noun in the relative clause of a sentence head and manipulated its semantic congruency with a locally preceded classifier which constrained the head noun. By using the visual world paradigm, they showed that participants’ proportional looking at the picture of the embedded noun was reduced upon hearing the embedded noun following a mismatching (e.g. *click on a shan* window classifier football broken window) (click on a window that was broken by the football) than matching classifier (e.g. *click on a zhi* paper). These findings suggest that upon local mismatch, the semantic process at the higher-level proceeds when the local constraint is violated. While in both studies the verb-noun mismatch elicited an increased N400 response relative to the matched condition, suggesting a stronger effort of accessing or integrating the target word (Kutas and Federmeier, 2000, 2003), the N400 did not show further increase in Chinese (Zhang et al., 2011) when the local constraint was further mismatched (i.e., double mismatch vs. local mismatch), suggesting that upon local mismatch, the semantic process at the higher-level does not proceed in Chinese but still function in German.

This cross-language discrepancy can be accommodated by a “role-dependent semantic processing” hypothesis (Jiang and Zhou, 2012; Zhang et al., 2011). The N400 response is enlarged in face of an additional mismatch only when no other possible roles can be assigned to the object noun mismatching the local constraint, as in German. The availability of multiple syntactic possibilities depends on the syntactic flexibility in different languages. In Chinese, due to the lack of case marking that differentiates syntactic functions, a target noun can either be an object or a modifier that constrains a subsequent noun under certain circumstances. For example, a sentence containing a classifier-noun and verb-noun mismatch, as in (3), is possible to continue if *xinzhi/paper* is reassigned a role as a pre-nominal modifier (e.g., *Zhao repaired one tai* electric-appliance classifier *radio on which the paper was placed*). In (3), the *xinzhi/paper* is not constrained directly by the verb or classifier whereas the new object noun *radio* is. Thus, the semantic integration at the higher-level structure maybe suspended or blocked in face of the local semantic failure when the mismatching noun can be recovered structurally, leading to no N400 increase in the double mismatch condition as compared with the local mismatch condition in Zhang et al. (2011).

(3) "Zhao xiulile yi tai xinzhi.

* Zhao repaired one tai electric-appliance classifier paper.(Zhao repaired paper).

However, in German, a masculine object noun was grammatically unambiguous given its accusative case marking, and a neutral or feminine noun was unambiguous when thematic/semantic relation between verb and noun is certain. No alternative structure is available when both constraints are mismatched and the noun has to be integrated as the direct object of the noun as assigned by case, leading to a larger semantic difficulty and a larger N400 effect for additional verb-noun incongruence in the double mismatch as compared with the local mismatch.

In languages that allow structural flexibility, the contextual coherence also constrains the availability of an alternative structure. Jiang and Zhou (2012) manipulated the availability of an alternative structure by maintaining or breaking the contextual coherence in Chinese sentences and investigated the impact of contextual incoherence on the

1 We provide both literal and free translation (in brackets) for this sentence example and the rest of the examples. “DE” in Chinese serves an auxiliary which indicates that its preceding noun or a relative clause functions as a modifier of another noun that follows “DE”. Here, the textbook is part of the relative clause that modifies song.

2 The word in Chinese and its free translation in English are separated by “/”.
semantic process, such as (4) and (5). In (4), the semantic constraints between verb, classifier and object were all mismatched while in (5), the constraint between verb and classifier and the constraint between classifier and object were sequentially mismatched. In both sentences, the semantic mismatch prior to the noun prevents the system from generating a possible relative clause structure. The additional mismatch (at the higher-level) in the triple mismatch condition elicited a larger N400 effect on the object noun than the sequential mismatch. These findings are consistent with Zhang et al. (2011) that when the structural alternative is canceled by the contextual incoherence, the semantic integration process at the higher-level proceeds in face of a local failure. Moreover, the sequential mismatch elicited a larger N400 as compared with the single, local mismatch, suggesting that the integration effort is enhanced in a sentence with no structural alternative even when the semantic constraint at the other level (higher-level) is intact.

(4) Xiaoli fengbu yi tai xinzhi
Xiaoli sew one tai appliance-classifier writing letter. (Xiaoli sewed writing letter).

(5) Xiaoli fengbu yi tai kuzi
Xiaoli sew one tai appliance-classifier trousers. (Xiaoli sewed a pair of trousers).

One limitation in Jiang and Zhou (2012) is that the manipulation of contextual coherence was confounded with the number of mismatch in the sentence. It is unclear if the reduction of the N400 in the sequential (vs. triple mismatch) condition was due to the presence of an alternative structure or because there were fewer mismatches. If a “structural reanalysis strategy” is taken as a possible “way-out” to resolve the semantic failure at one level (regardless of whether the semantic constraint at the other level is intact or not), we assume that the N400 response to the incongruent word should be reduced if a structural alternative is available than when no alternative is available, regardless of the type of phrases (local, higher-level) or number of mismatches. Given that the stimulus set contained filler sentences in which the role as direct object of the critical noun was immediately disconfirmed by the words following this noun in these studies, it is likely that the structural alternative was built from expectation based on the sentential context prior to the critical noun (the sentential context constrained a particular noun in the mismatch condition at a moderate cloze probability rate of 39%, Zhou et al., 2010).

1.2. Electrophysiological correlates of contextual expectancy and lexical expectedness on a role-ambiguous word

While very few studies focused on the contextual expectation on a word with possible structural alternatives, studies have examined how a less expected but congruent word, or an incongruent word, with no ambiguous role, is integrated into a sentential or discourse representation. As compared with an expected continuation, an increased N400 was demonstrated for a less expected or incongruent continuation, suggesting difficulties in lexical access (Federmeier et al., 2007; Hirotani and Schumacher, 2010; Kutas and Federmeier, 2011; Payne et al., 2019; Rommers et al., 2012) or effort of integration into the contextual representation (Van Berkum et al., 2005; Zhang et al., 2011). The less expected word elicited an additional frontally-distributed late positivity than a more expected word (Delong et al., 2011, 2014), reflecting a process of inhibiting/updating the contextual representation with respect to the comprehender’s linguistic knowledge (Kuperberg et al., 2020). In contrast, a centrotemporally-distributed late positivity was observed on a locally-incongruent word which could be possibly resolved at other levels of sentential context (Chow and Phillips, 2013; Jiang et al., 2012; Kuperberg et al., 2007; Van Herten et al., 2006). This positivity may reflect continued processing following the initial detection of semantic/thematic conflict (Kuperberg, 2007; Kuperberg et al., 2020), possibly involving the implementation of monitoring and control (Federmeier et al., 2007; Kolk and Chwilla, 2007; Ye and Zhou, 2008), checking for well-formedness (Bornkessel-Schlesewsky and Schlesewsky, 2008), coordination of multiple semantic processes (Jiang and Zhou, 2012), and the re-construction/updating of the mental representation (Brouwer et al., 2012).

Studies on the effect of contextual expectancy manipulated the strengths of expectancy by the cloze probability of the mostly used continuation. The mostly used completion is highly consistent across the producers for the high-expectancy context and no consistency is reached for the low-expectancy context. The contextual expectancy exerts differential impacts on words varying in their expectedness or preceded by a coherent or incoherent context. A reduced N400 response was found on the mostly expected word following a high-expectancy context than a low-expectancy context (Kutas and Federmeier, 2000), or following a context with a figurative meaning than a context indicating a literal meaning (Molinaro and Carreiras, 2010; Vespignani et al., 2010), suggesting that the high-expectancy context facilitates or exerts a priming effect on the access of the target word. The pattern of N400 on the unexpected but congruent words is less consistent between studies. In this case, other factors (such as semantic similarity) may play a role in the contextual modulation of N400. An unexpected word which is semantically similar to (or associated with) the expected word elicits a reduced N400 response in the high-expectancy (They wanted to make the hotel look more like a tropical resort. So along the driveway, they planted rows of palms) than in the low-expectancy context (The air smelled like a Christmas wreath and the ground was littered with needles. The land in this part of the country was just covered with palms, Federmeier and Kutas, 1999; Otten and Van Berkum, 2007), suggesting that the semantic overlap with the contextual representation benefits lexical access, even though this lexical item is not the best continuation of the context. In contrast, unexpected and dissimilar (or unassociated) words elicit no differential N400 responses between contexts of different expectancy strengths (low: He looked worried because he might have broken his collection vs. high: He bought her a pearl necklace for her collection. Federmeier et al., 2007; Federmeier and Kutas, 1999). Instead, a late positivity with broad (Otten et al., 2007) or frontal distribution (Federmeier et al., 2007) occurred in high-vs. low-expectancy condition, suggesting the implementation of inhibitory process to resolve the incompatibility between the actual and expected representations. The influence of semantic similarity has also received evidence in an experiment in which the expectedness of the target word (expected vs. unexpected), the sentence-level plausibility and the semantic similarity (or semantic relatedness) between the target and the context words were systematically varied (Nieuwland et al., 2019). The authors demonstrated that, after the contributions of the other two factors were controlled, the semantic similarity did not modulate the N400 but the post-N400 positivity, with a reduced similarity increasing the late positivity. Finally, some studies revealed that the incongruent target word in the high-expectancy context elicited an enhanced N400 as compared with the word in the low-expectancy context. An increased N400 was found on impossible words embedded in a highly-predictive story scenario (e.g. *hide a small lion in a context consistently predicting a compass, e.g. Peter was bragging about his good sense of direction*) than those following a low-predictive scenario (e.g. *clean the entire wolf in a context spring cleaning in the house that predicts multiple continuations associated with ant, Szewczyk and Schriefers, 2013*). Others demonstrated the absence of contextual modulation on the incongruence elicited N400 but the presence of such modulation on the late positivity that follows the N400, with the positivity effect larger in the high vs. low-expectancy condition (Kuperberg et al., 2020; see Van Petten and Luka, 2012 for a review). These findings consistently suggest that when a word can neither be a continuation nor be semantically associated with the most expected word, the integration of this word into the high-expectancy context suffers from increased difficulty, causing an increased prediction violation penalty on the word that
disconfirms a high-expectancy (relative to a low-expectancy) context. However, it is not clear yet whether the N400 or the late positivity reflects the disconfirmed expectancy (Van Petten and Luka, 2012).

In these studies, the target words were all syntactically unambiguous and the semantic processes on the target words took place based on the existing compositional rules (e.g., the object of a verb argument structure). The majority of these studies were conducted with a language in which the syntactic role of a word is fixed by grammatical case marking (i.e., a noun without a genitive marker cannot be a modifier) and the word order is inflexible (i.e., a prenominal modifier is not commonly used). Thus, the structural reanalysis cannot be applied as a possible resolution of the semantic incongruence. It is largely unknown how the neuropsychological responses towards the prediction violation penalty could be altered when the possibility of structural reanalysis is high. In Chinese, the prenominal modifier is prevalent and the case marking could be altered when the possibility of structural reanalysis is high. To this end, we employed a Chinese structure congruent with the contexts as an object, as the noun can be temporarily and syntactically ambiguous. To this end, we employed a Chinese structure manipulating both the contextual expectancy and the local congruency context or when asked to judge the lexical association) as compared with passively reading (Roehm et al., 2007). Reader’s willingness to make active prediction, which varies between elderly (low-motivation) vs. young adults (high-motivation), leads to differential brain responses towards a mismatch to prediction, with elderly adults not showing an N400 effect towards a gender-incongruent article (Delong et al., 2012). It is therefore of great interest how an individual’s motivation during sentence reading would affect their strategy of using the contextual expectancy to process a word in a flexible structure.

1.3. The present study

In this study, we aim to investigate the “role-dependent semantic processing” by examining how contextual expectancy affects the local semantic process on a noun that was mostly expected or was incongruent with the contexts as an object, because the noun can be temporarily and syntactically ambiguous. In this study, we employed a Chinese structure (“subject noun + verb + adjective phrase (AP) + object noun”) similar to Zhang et al. (2011) in which the ambiguous object noun can either be a verb argument that is constrained by both verb and local AP, or a modifier that constrains a new noun to form a new object phrase. By manipulating both the contextual expectancy and the local congruency between AP and noun in the structure, we created four types of sentences: low-expectancy, congruent, low-expectancy incongruent, high-expectancy congruent, high-expectancy incongruent (see Table 1). The congruent object noun was always the mostly used continuation of the context and the incongruent noun was unexpected and impossible as a direct object following the context.

As demonstrated by Wu et al. (2014), the local incongruence serves as a cue for the reader to reanalyze the subject-verb-object structure into a subject-verb-modifier-object structure in which the object noun can be reassigned a role of a prenominal modifier. Thus the adjective-noun mismatch increases the availability of an alternative structure relative to the match condition. In (6), the mismatched sentence can be re-interpreted as being congruent when program is reassigned a modifier of a new object shengyin/sound, which is the head of a relative clause (see (7)). The new object sound is congruent with the context (subject-verb-AP-modifier noun) and also matches the constraints from both the adjective and the verb.

Under which contextual expectancy the structural reanalysis is easier to initiate in face of a word that is incongruent with the context? The “High-Expectancy-Easy” hypothesis assumes that, relative to the low-expectancy, the high-expectancy context encourages the reader more to pursue a structural reanalysis. The structural reanalysis strategy is highly viable in the mismatched high-expectancy condition since it strongly predicts a word as an alternative object (sound) and a strong new representation is available, e.g. Wang Li heard a sharp, see (7).

(6) *Wang Li tingjian ci er de jiemu/Wang Li heard a sharp DE program (Wang Li heard a sharp program)

(7) Wang Li tingjian ci er de jiemu zhongjian fachu de shengyin/ Wang Li heard sharp program in the middle of DE sound (Wang Li heard sharp sound in the middle of the program)

According to the “High-Expectancy-Easy” hypothesis, the structural reanalysis strategy is less viable when the contextual information does not consistently predict a word, since there can be many possibilities, e.g. street, path, lane, etc. to continue the sentence (8) and no particular representation can be formed (see example 9 for one possibility). Normally the comprehension system does not take endeavor to search for an alternative structure. However, it is not unexpected that the object noun becomes more likely to be reassigned a new role when the prediction is heavily demanded (e.g., when readers actively think ahead during sentence comprehension). Note, the “High-Expectancy-Easy” hypothesis is motivated empirically. The increased positivity on the incongruent words in the highly-vs. lowly-expectancy context (as reviewed in the last section) suggest that readers engage some additional processes to reconcile the mismatch between the predicted and the actually-presented words (Kuperberg et al., 2020; Van Petten and Luka, 2012). The highly predictive context could facilitate the initiation of the structural reanalysis of the noun and prevent the comprehension system from engaging further integration of the noun into the local context. Moreover, the semantic similarity between the incongruent word and the context words and/or between the incongruent word and the

Table 1
Conditions and sentence exemplars in the experiment. Both literal and free English translations were provided. Segments were separated by space.

<table>
<thead>
<tr>
<th>Contextual expectancy</th>
<th>Local semantic congruency</th>
<th>Sentence Exemplar</th>
<th>Chinese Exemplar</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-expectancy</td>
<td>Congruent</td>
<td>Wang Li heard a sharp sound and immediately screamed/ 王莉听到/听到/的声/的/和/紧张的/尖叫。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incongruent</td>
<td>Wang Li heard a sharp sound and screamed out immediately/王莉听到/听到/的/节目/的/节目/的/的/乐曲。</td>
<td></td>
</tr>
</tbody>
</table>
is more constraining (Nieuwland et al., 2019). The combined increase of affect semantic integration, the incongruent word would be coerced to sentences. If the strategy of expecting a structural alternative does not increase N400 and its following positivity as compared with congruent potential modifier following a sentential context, although none of them hinder to pursue multiple available alternatives upon a semantic failure evidence against it. Secondly, it seems not economic for the comprehension appears before the disambiguation point structural reanalysis by facilitating the access to the mostly-expected contextually-expected word is often higher when the sentential context -

In contrast, the “Low-Expectancy-Easy” hypothesis assumes that if the reader is highly committed to an object interpretation based on the high-expectancy context, it would be difficult for them to abandon this analysis and re-commit themselves to an alternative one. When the contextual expectation is less constraining, the structural reanalysis is easier and the alternatives are more available.

Although both hypotheses seem reasonable, from both empirical and practical perspectives, the “High-Expectancy-Easy” hypothesis is more favored. Firstly, the “Low-Expectancy-Easy” hypothesis receives less support from evidence in the empirical literature. Some psycholinguistic studies showed that as the depth of processing an initially-assigned incorrect syntactic structure increases (e.g., when additional information appears before the disambiguation point “was” in After the Martians invaded the town was evacuated), the cost of reanalysis became higher and the grammatical acceptability of the sentence became lower (Ferreira and Henderson, 1991; Slattery et al., 2013; Tabor and Hutchins, 2004); However, other studies suggest that the initiation of syntactic reanalysis could occur immediately regardless of the depth of processing (e.g., Staub, 2007). Moreover, when semantic information was present as a cue for reanalysis, it could effectively override the initial misanalysis and the cost of reanalysis was reduced (Hsieh et al., 2009). These findings suggest that the “Low-Expectancy-Easy” hypothesis has competing evidence against it. Secondly, it seems not economic for the comprehender to pursue multiple available alternatives upon a semantic failure when the contextual expectancy was low. The availability of alternatives could be equally low and no alternatives could sufficiently trigger a reanalysis process.

Although the two hypotheses could make different predictions for the high-vs. low-expectancy incongruent sentences, the structural reanalysis strategy is unlikely to apply to congruent sentences. For sentences with a low contextual expectancy (10), the object noun jiedao/ street is relatively unlikely to be reinterpreted as a pronominal modifier of xiaolu/path like (11) even though street is only slightly better predicted than other candidates by the sentential context. Given the lack of strong predictive cue, the structural assignment of street depends on structural complexity. The “subject-verb-AP-object” is much simpler and requires less computational demand than the alternative relative clause, which requires an additional head and therefore the comprehension system sticks to the minimal structure (Wu et al., 2014).

(8) *Wangling chuanguo xiazhai de senlin/Wangling walked through a narrow DE forest. (Wangling walked through a narrow forest.)
(9) Wangling chuanguo xiazhai de senlin houmian de jiedao/ Wangling walked through a narrow DE forest behind DE path. (Wangling walked through the narrow path behind the forest.)

We created these sentences in which all object nouns can be a potential modifier following a sentential context, although none of them were actually disambiguated by following constituents. We predicted that sentences with incongruent adjective-noun combination would increase N400 and its following positivity as compared with congruent sentences. If the strategy of expecting a structural alternative does not affect semantic integration, the incongruent word would be coerced to be integrated with the context as an object noun in the verb-argument structure, leading to a larger N400 (Jiang and Zhou, 2012; Szewczyk and Schriefers, 2013) or a larger post-N400 positivity in the high-expectancy than in the low-expectancy condition due to a stronger prediction violation penalty in the former than in the latter (Van Petten and Luka, 2012). On the contrary, if the strategy affects the semantic integration (and even so when no actual disambiguating word exists), the integration demand on the incongruent noun would benefit from reassigning a modifier role to the noun. As predicted by the “High-Expectancy-Easy” hypothesis, in the high-expectancy context, the reader is more likely to predict a new noun and the structural reanalysis is more viable. A less or an equal N400 response would be predicted for high-than low-expectancy context, depending on the extent to which the comprehension benefits from the predicted structural alternative. An opposite finding could be observed under the “Low-Expectancy-Easy” hypothesis. Previous research demonstrated that the semantic similarity between the target word and the context words and/or the similarity between the target word and the context-expected word may result in a reduced N400 on the unexpected but possible target words preceded by the high-expectancy (vs. low-expectancy) context (Federmeier and Kutas, 1999; Ito et al., 2016; Otten and Van Berkum, 2007) or an increased late positivity on the target words (Nieuwland et al., 2019). By analogy, the presented unexpected, incongruent words could similarly show a smaller N400 and/or late positivity in the high-expectancy (vs. the low-expectancy) context. This pattern is perhaps more predicted under the “High-Expectancy-Easy” hypothesis given that the online use of similarity information may be more encouraged under this hypothesis. The increase of semantic similarity could ease the structural reanalysis by facilitating accessing to the mostly-expected noun and restructuring of the sentence. On the congruent noun, a reduced N400 response is predicted on the high-expectancy than the low-expectancy context (Kutas and Federmeier, 2000; Molinaro and Carreiras, 2010).

As structural reanalysis could be facilitated by motivation during reading, we aimed to examine how the task that facilitates or inhibits the active use of contextual information modulates the effects of contextual expectancy on congruent and incongruent nouns. A same set of sentences were given to three groups of readers, who were asked to read sentences for acceptability judgment (Exp. 1), passive reading (Exp. 2), or actively predicting the upcoming words and verifying the compatibility between predicted and actual constituents (Exp. 3). We used sentences ending with the object noun without being followed by disambiguating cues. Therefore, we can examine the consequence of sentence restructure linked to the context and the predictive demand, but not to the presence of any disambiguating cues.

We predicted differential task effects of how contextual expectancy modulates the N400 on the incongruent and the congruent nouns. On incongruent nouns, the N400 reduction in the high-expectancy condition, relative to the low-expectancy condition, may not appear when participants actively predicted the upcoming words. The active prediction demand enables the same structural reanalysis in the low-expectancy as in the high-expectancy condition, releasing the semantic effort to a similar level in both conditions. On congruent nouns, we predicted the smallest magnitude of N400 for the high-expectancy condition during active prediction given such a task strengthens the facilitatory effect of expectancy.

2. Experiment 1: Semantic acceptability judgment

2.1. Participant

Nineteen undergraduate or graduate students from Peking University were recruited for the ERP study. Data from two participants were excluded from analysis due to excessive movement artifacts, resulting in 10 males and 7 females (Mean = 22 years, ranging from 19 to 26 year). All participants were native Chinese speakers and had normal or corrected-to-normal vision. None of the participants suffered from any
neurological or psychiatric disorders. This study was approved by the Ethics Committee of the School of Psychological and Cognitive Sciences at Peking University.

2.2. Material and design

Ninety pairs of sentences were created. All sentences took the structure of “Subject noun + verb + adjective phrase (AP, constituted by an adjective and an adhesive auxiliary –de, see Jiang and Zhou, 2009 for a linguistic description) + object noun + complement phrase”. Each pair of sentences began with the same sentence context “Subject noun + verb + AP” but differed on the object noun and the phrase following the object noun (see below). Among all pairs, half (n = 45) contained high-expectancy contexts while the other half contained low-expectancy contexts. The contextual expectancy of each sentence fragment was determined by the percentage of the mostly produced word in a separate cloze probability test (see below). Sentences with high-expectancy contexts were continued with words that were mostly, and highly, produced in the cloze probability test whereas those with low-expectancy contexts were continued with words that were mostly produced but with much lower probability. These two types of sentences formed the congruent conditions in which the object noun of each sentence was semantically congruent with both AP and the verb. For the incongruent conditions, the object nouns in the congruent conditions were replaced by new ones which mismatched the local adjectives but matched the distant verbs. These incongruent nouns could nevertheless serve as modifiers of other nouns which fulfil the constraint of the context. None of the object nouns in the incongruent conditions mismatched the anomic constraints of the adjective (e.g. dishonest computer). Across the four conditions, the object nouns were matched in frequency (frequency of occurrences per million: 73.69 for high-expectancy, congruent; 73.59 for high-expectancy, incongruent; 74.63 for low-expectancy, congruent; and 71.88 for low-expectancy, incongruent) and visual complexity (number of stroke: 15.62 for high-expectancy, congruent; 15.62 for high-expectancy, incongruent; 16.20 for low-expectancy, congruent; and 15.82 for low-expectancy, incongruent) across conditions, Fs < 0.1. All object nouns were two-character words, and they appeared in each condition only once.

Additional forty filler sentences were created with various types of sentence structures. Sixteen filler sentences were of the subject-verb-object structure and the object was composed of a modifier noun, a preposition, DE and a head noun (e.g. Xiaoli dakaile taideng bianshang de diannao/Xiaoli turned on the laptop beside the table lamp). In these sentences, both the modifier noun and the head noun can be constrained by the verb and the head noun was interpreted as the object. The modifier noun was temporally ambiguous as it could be initially interpreted as the direct object of the verb. Another 24 fillers were of active (ba) construction (subject – ba – object – verb – complement phrase), or passive (bei) construction (subject – bei – verb – complement phrase), or object-initial structure (object – subject – verb – complement phrase).

2.3. Stimuli validation

Six pretests, including two phrase acceptability rating tests, one global acceptability rating test and two lexical generation tests were administered to validate the materials. To ensure that the object noun and the local adjective were felicitous in the congruent condition but mismatched in the incongruent condition, thirty-two participants who did not take part in the ERP experiment or other pretests were asked to rate the semantic acceptability of each adjective-noun combination in each condition. One hundred and eighty adjective-noun combinations were included in the test. The results revealed that the incongruent adjective-noun combinations (for the high-expectancy incongruent: Mean = 2.04, SD = 1.26; for the low-expectancy incongruent: Mean = 2.22, SD = 0.60) was rated with much lower acceptability than the combinations in the congruent conditions (for high-expectancy congruent: Mean = 6.63, SD = 0.73; for low-expectancy congruent: Mean = 6.58, SD = 0.08), F (1, 44) = 1485.01, p < 0.001. The local acceptability did not differ between high- and low-expectancy conditions, nor did expectancy interact with local congruity, Fs < 1, suggesting the incongruent conditions were matched in the local acceptability between high- and low-expectancy contexts.

To ensure that the object noun matched the distant verb in each condition, another thirty-two participants rated the semantic acceptability of 180 verb – object noun combinations. The results did not reveal any main effect of contextual expectancy or local congruency or the interaction between the two (high-expectancy, congruent: Mean = 6.48, SD = 0.46; high-expectancy, incongruent: Mean = 6.33, SD = 0.38; low-expectancy, congruent, Mean = 6.48, SD = 0.46; low-expectancy, incongruent: Mean = 6.45, SD = 0.38), Fs < 1. The verb - object noun combination was equally acceptable whether the object noun was congruent or incongruent with the local adjective and whether the contextual expectancy was high or low.

To examine how the global acceptability was affected by the relationship between the object noun and sentential context, a new group of fourteen participants were asked to judge the general acceptability of the 180 critical sentences. Overall, the incongruent sentences (high-expectancy: Mean = 6.19; SD = 1.31; low-expectancy: Mean = 6.11; SD = 1.40) were judged less acceptable than the congruent sentences (high-expectancy: Mean = 3.17; SD = 2.16; low-expectancy: Mean = 3.20; SD = 2.16), F (1, 44) = 899.388, p < 0.0001. Neither the effect of contextual expectancy nor the interaction between contextual expectancy and congruency was significant, Fs < 1. These findings suggest that contextual constraints did not impact the perceived acceptability of the entire sentence when the noun matched or mismatched the preceding adjective.

To determine the contextual constraint and the cloze probability of each object noun, twenty-two participants were instructed to continue the sentence fragments (i.e. subject noun + verb + AP) with a word that first came into their mind and was the most appropriate to complete the sentence. All sentence contexts (90 sentence fragments) entered the cloze test. The average cloze probability for the mostly produced words, which were used as actually-presented nouns in the congruent conditions, was much higher for the high-expectancy (76.6%, ranging from 55% to 100%) than for the low-expectancy sentence fragments (23.8%, ranging from 14% to 36%), F (1, 44) = 523.64, p < 0.001. The average cloze probability for the actually used nouns in the incongruent conditions was 0 for both the high- and low-expectancy sentence fragments.

To dissociate the effect of sentential expectancy and the lexical priming effect from the verb or the adjective on the object noun, a word association test was conducted for the verb and the adjective, respectively, with 16 participants for each. Each participant was asked to generate a noun that first came into mind upon seeing a verb or an adjective. All verbs (n = 90) and adjectives (n = 90) from the critical sentences were included in the lexical generation task. For the congruent conditions, the average probability of producing the actually use target words was higher for the high-expectancy (42.22%) than for the low-expectancy (10.56%), F (1, 44) = 45.63, p < 0.001, upon seeing the adjective words, and was higher for the high-expectancy (14.86%) than for the low-expectancy (7.36%), F (1, 44) = 3.95, 0.05 < p < 0.1, upon seeing the verbs. However, the cloze probability of the target words was 0 in the two incongruent conditions upon seeing either the adjectives or the verbs. These findings suggested that while the verbs and the adjectives were associated with the object nouns more strongly in the high-expectancy than in the low-expectancy congruent conditions, they did not have the associations in the incongruent conditions.

To assess the semantic similarity between the target word and the sentential context, the cosine similarity of latent semantic association (LSA) between the target word and sentential context words was calculated respectively for the high- and the low-expectancy context (Feng et al., 2017; Nieuwland et al., 2019). The LSA approach was
performed based on the semantic space trained on a comprehensive corpus of Chinese Wikipedia (http://dumps.wikimedia.org; see also Feng et al., 2017). The LSA between the target word and the context words did not reveal a significant effect between high- and low-expectancy contexts for the incongruent target (Mean = 0.15; SD = 0.13; Mean = 0.12; SD = 0.11; F (1, 88) = 1.33, p = 0.25) and the congruent target (Mean = 0.26; SD = 0.22; Mean = 0.26; SD = 0.21, F < 1). We also calculated the LSA between in-congruent word (in the incongruent condition) and the mostly-expected word in the context for both the high- or the low-expectancy conditions (based on the semantic space: http://www.lsa.url.tw/modules/lsa/lsa_pairwise_comparation.php; with 300 dimensions). Lexical stems were used whenever the words did not appear in the corpus (influencing 6 pairs out of 90 ones). The LSA for the target word and the mostly-expected word was marginally different between the high- (Mean = 0.12; SD = 0.14) and the low-expectancy condition (Mean = 0.08; SD = 0.09), F (1, 88) = 3.26, p = 0.07.

2.4. Procedure

Participants were seated in a comfortable chair in a sound-attenuated and electrically-shielded chamber. They were instructed to move their head or body as little as possible and to keep their eyes fixated on a sign at the center of the computer screen. This fixation sign was at the eye-level and was approximately 1 m away. Sentences were presented 700 ms after the fixation sign, and were presented segment-by-segment in rapid serial visual presentation (RSVP) mode at the center of the screen, with both horizontal and vertical visual angles lower than 1°. Each sentence consisted of 8 segments (i.e., Wangli | tingdao | ci’er | de | shengyin | he | jinzhangde | jianjiao. See Table 1). Each segment was presented in white against black background, with a 400 ms duration followed by 400 ms blank screen. Following each sentence, a short-delayed question mark appeared at the center of the screen and participants were asked to judge whether the sentence was semantically acceptable by pressing buttons with right or left index finger. The assignment of response buttons was counter-balanced across participants. Sentences were pseudo-randomized with the constraints that 1) no more than three consecutive sentences were from the same condition; 2) No more than four consecutive sentences contained a high- or a low-expectancy context; 3) no more than four consecutive sentences required the same button response. To reduce the potential repetition effect, sentences with the same context were separated by at least thirty other sentences. Each participant received a different experimental sequence. Each sequence contained 220 sentences in total, with 45 sentences per critical condition, and was evenly divided into four testing blocks. There were 24 practice trials prior to the formal test.

2.5. EEG recording

The EEGs were recorded from 62 electrodes in a secured elastic cap (Electrocap International in NeuroScan Inc., Herndon, Virginia, USA) localized over the midline (i.e. Fp2, Fz, Fcz, Cz, Cpz, Pz, POz and Oz), the left hemisphere (i.e. AF7, AF3, FP1, F7, F5, F3, F1, FT7, FC5, FC3, FC1, T7, C5, C3, T3, TP7, CP5, CP3, CP1, P7, P5, P3, P1, PO7, PO5, PO3 and O1) and the corresponding locations in the right hemisphere. The vertical electro-oculogram (VEOG) was recorded from electrodes placed above and below the left eye. The horizontal EOG (HEOG) was recorded from electrodes placed at the outer canthus of each eye. The linked bilateral mastoids served as reference and the GND electrode on the cap served as ground. Electrode impedance was kept below 5 kΩ. The biosignals were amplified with a band pass between 0.05 and 100 Hz. The EEG and EOG were digitized on-line with a sampling frequency of 500 Hz.

2.6. EEG analysis

Incorrectly judged sentences and sentences contaminated by EEG artifacts (with potentials exceeding ± 70 μV) were rejected before the averaging procedure, resulting in 86.7% artifact-free trials on average (40 the high-expectancy, congruent, 38 in high-expectancy incongruent, 39 in low-expectancy congruent and 39 in low-expectancy incongruent conditions). The EEGs were segmented from −200 ms before to 800 ms after the onset of the object nouns, and were corrected with 200 ms prestimulus interval as baseline. The ERPs were computed per participant per condition. Based on visual inspection of grand averages and previous findings, two time windows were selected: 300–450 ms for the N400, 450–800 ms for the late positivity. The repeated-measures ANOVAs were conducted with contextual expectancy (high vs. low) and local adjective-noun congruency (congruent vs. incongruent) as within-participant factors. Topographic factors were also included for the midline and the lateral analysis. The midline analysis had one factor: electrode (Fz, FCz, Cz, CPz, Pz and POz). The lateral analysis had three factors: hemisphere (left vs. right), region (anterior vs. central vs. posterior) and electrode. The hemisphere and region were crossed, forming 6 regions of interest (ROIs), each of which represented by 6 electrodes: left anterior (F1, F3, F5, FC1, FC3, FC5), left central (C1, C3, C5, CP1, CP3, CP5), left posterior (P1, P3, P5, P7, PO3, P07), right anterior (F2, F4, F6, FC2, FC4, FC6), right central (C2, C4, C6, CP2, CP4, CP6) and right posterior (P2, P4, P6, P8, PO4, PO8). Significant interactions involving contextual expectancy and/or local congruency were followed by pairwise comparisons. Greenhouse-Geisser correction was applied when necessary (Geisser and Greenhouse, 1959).

2.7. Result

2.7.1. Behaviors: acceptability judgment

A repeated measures ANOVA was conducted on the percentage of the correctly responded trials for all the 17 participants, taking contextual expectancy (high vs. low) and local congruency (congruent vs. incongruent) as within-participant factors. There was a significant interaction between contextual expectancy and congruency, F (1, 18) = 8.00, p < 0.05. No main effect reached significance: contextual expectancy, F (1, 18) = 2.12, p > 0.1, local congruency, F (1, 18) = 2.41, p > 0.1. The mean accuracy was the highest for the high-expectancy, congruent condition (94.0%), and did not differ between the other three conditions (88.0%–89.8%).

2.7.2. ERPs

As is shown in Fig. 1, the adjective-noun mismatch elicited larger N400 responses, followed by larger late positivity responses, than the match conditions on the object noun. The high-expectancy conditions elicited reduced N400 responses as compared with the low-expectancy conditions regardless of the local adjective-object noun congruency. These observations were confirmed by statistical analyses.

2.7.2.1. N400: 300–450 ms.

The ANOVA taking contextual expectancy, local congruency, and topographic factors as within-participant variables revealed a significant main effect of local congruency in the midline, F (1, 16) = 20.19, p < 0.001, and in the lateral analysis, F (1, 16) = 13.26, p < 0.005. The local incongruent conditions elicited larger N400 responses as compared with the congruent conditions (with the effect being −1.28 μV in the midline and −0.96 μV in the lateral). This main effect interacted with electrode in the midline, F (5, 80) = 3.97, p < 0.05, and with region in the lateral analysis, F (2, 32) = 4.96, p < 0.05, suggesting a central and posterior distribution of the N400 effect (see Fig. 1). The effect of contextual expectancy was significant in the midline, F (1, 16) = 6.82, p < 0.05, and in the lateral analysis, F (1, 16) = 7.63, p < 0.05, suggesting that the high-expectancy elicited reduced N400 responses as compared with the low-expectancy on the object
Fig. 1. Grand average waveforms on 9 representative electrodes, time-locked to the object noun from −200 ms pre-onset and 800 ms post-onset, in the acceptability judgment task.

noun (with the effect being −1.01 μV in the midline and −0.89 μV in the lateral). Contextual expectancy and local congruency interacted in the midline, F (1, 16) = 4.84, p < 0.05, and in the lateral analysis, F (1, 16) = 4.02, 0.05 < p < 0.1. Separate analysis revealed a significant effect of contextual expectancy for both the congruent (F (1, 16) = 11.72, p < 0.005 in the midline, F (1, 16) = 12.51, p < 0.005 in the lateral) and incongruent conditions (F (1, 16) = 3.98, p < 0.05 in the midline, F (1, 16) = 3.67, p < 0.05 in the lateral analysis), with the effect being larger in the former than in the latter. The high-expectancy conditions elicited reduced N400 responses than the low-expectancy conditions on the object nouns, for both the congruent (with effect being −1.62 μV in the midline and −1.32 μV in the lateral) and the incongruent nouns (−0.72 μV in the midline and −0.66 μV in the lateral).

2.7.2.2. Late positivity: 450–800 ms. The ANOVA revealed a marginally significant main effect of local congruency in the midline, F (1, 16) = 3.08, 0.05 < p < 0.1, suggesting that the incongruent conditions tended to elicit larger positive responses as compared with the congruent conditions (with the effect being 0.72 μV in the midline). Neither the main effect of contextual expectancy, F (1, 16) = 1.02, p > 0.1, nor the interaction between contextual expectancy and local congruency reached significance, F < 1. However, there was a significant three-way interaction between contextual expectancy, congruency and electrode in the midline, F (5, 80) = 3.70, p < 0.05 and between contextual expectancy, congruency and region in the lateral analysis, F (2, 32) = 9.77, p < 0.005. Separate analysis on each level of contextual expectancy revealed a significant effect of local congruency for the high-expectancy conditions on Fz, F (1, 16) = 4.91, p < 0.05; FCz, F (1, 16) = 4.70, p < 0.05 and lateral anterior region: F (1, 16) = 3.98, p < 0.05, suggesting an anterior positivity effect in the incongruent vs. the congruent comparison (see Fig. 1). For the low-expectancy condition, a significant effect of local congruency was shown only on CPz, F (1, 16) = 4.36, p < 0.05 (see Fig. 1). The comparison between high- and low-expectancy conditions on each level of congruency revealed a significant effect of expectancy only for the incongruent sentences in the anterior-central, Fz, F (1, 16) = 3.25, p < 0.05; Cz, F (1, 16) = 4.06, p < 0.05; lateral anterior, F (1, 16) = 4.18, p < 0.05, and lateral central regions, F (1, 16) = 3.78, p < 0.05, with more positive responses for the high-expectancy sentences than for the low-expectancy sentences.

3. Discussion

Employing a “subject + verb + AP + object” structure in which the object noun permitted an alternative role, we observed an increased N400 followed by a late positivity on the object noun mismatching the local AP semantic constraints. The biphasic pattern was observed previously for semantic mismatches in sentences with a hierarchical structure in which the object noun is syntactically ambiguous (e.g., local mismatch: Jiang and Zhou, 2012; higher-level mismatch: Zhang et al., 2011). The increased N400 reflected a difficulty in integrating an incongruent word into the local combination. The occurrence of an N400 effect suggests that the intact constraint from the higher-level structure between verb and noun and the availability of an alternative structure in which the object noun is syntactically ambiguous cannot completely eliminate the semantic integration difficulty on the object noun.

Importantly, we found a contextual effect on the N400, with the high-expectancy eliciting a reduced response than the low-expectancy on both the congruent and the incongruent nouns. The reduction of N400 (and in some studies, an increase of P300, see Molinaro and Carreiras, 2010; Vespignani et al., 2010) on the congruent noun may reflect the contextual facilitation on the lexical access of the target word (or a direct access to the word that best matches the contextual expectation, Molinaro and Carreiras, 2010; Nieuwland, 2019; see Exp. 3 for further discussion). The finding of a contextual modulation on the
incongruent word is not inconsistent with the notion of prediction violation penalty in previous reports. In these experiments, no alternative structures were available on the target word and the integration of the word into the context it mismatched could not benefit from the word being reassigned a new role of the sentence. Some studies showed an increased N400 on impossible words embedded in a highly-predictive vs. a lowly-predictive scenario (Szewczyk and Schriefers, 2013). Others demonstrated that, even when the unexpected and anomalous continuation can benefit from extra contextual information (e.g., phonological similarity in the initial phonemes of the actually presented and the predicted word, dolphins follows the following context with the best continuation dollar: It was a pleasant surprise to find that the car repair bill was only seventeen …), the N400 elicited by the continuation did not increase when the context was strongly (vs. weakly) predictive (e.g., caption follows the same sentential context above; Chow and Phillips, 2013; Chow and Phillips, 2013; Federmeier et al., 2007). One recent theoretical assumption states that, the N400 does not reflect the disconfirmed expectancy while the positivity effect that follows the N400 does (Van Petten and Luka, 2012). Our findings appear to extend these findings by demonstrating that the expectancy violation penalty may be manifested not by the N400 effect but by the late positivity, when the context-mismatching word can be assigned an alternative structure.

The reduction of N400 on the incongruent noun suggested that the object noun was not coerced into the sentential context of a verb argument structure; otherwise, a larger N400 would be elicited on the incongruent word in the high-than in the low-expectancy condition (Jiang and Zhou, 2012; Szewczyk and Schriefers, 2013). Our explanation is that building an alternative structure and reassigning a modifier role to the object noun may reduce the effort of integrating the incongruent word into the context. The contextual modulation of N400 responses is probably driven by whether structural reanalysis is initiated as a resolution of local mismatch. This probability was made explicit given that the modifier noun in a small proportion of filler sentences was the modifier of the head noun. The finding that the high-expectancy context reduced the N400 on the incongruent noun as compared with the low-expectancy context favors the “High-Expectancy-Easy” hypothesis. When the contextual information is highly predictive, the possibility of structural reanalysis is highly viable, rendering a reduction of semantic integration effort on the incongruent noun. The comprehension system may suspend or block the integration of the noun into the preceding local context to mitigate such effort. When the contextual information is less predictive, it is possible that the structure reanalysis is not triggered because no alternative representation is strong enough to trigger the process. Indeed, the average cloze probability of the object nouns in the low-expectancy condition was similar to some of the words not used in the sentences, with the actually used object nouns produced by only 3–9 out of 22 responders in the cloze probability pretest.

The contextual modulation on the N400 for a local mismatch when an alternative interpretation is available is broadly consistent with previous studies showing that the local N400 can be attenuated or eliminated by means of discourse priming (Nieuwland and Van Berkum, 2006), thematic role attraction (Kim and Osterhout, 2005; Kuperberg et al., 2003, 2007), or world knowledge heuristic (Hoeks et al., 2004; Kolk et al., 2003; Van Herten et al., 2005, 2006; Vissers et al., 2007). The reduced N400 in the present study could not be attributed simply to a facilitative effect by the sentential context. The critical noun here mismatched the selectional restriction of the adjective and was neither expected nor associated with the contextual information or with the context words as demonstrated by our LSA analysis for the stimuli. Although a reduction of N400 was seen on unexpected but contextually associated words (Federmeier and Kutas, 1999; Otten and Van Berkum, 2007), the effect observed here could not be attributed to lexical priming from the verb or from the context words given the results of the pretests and the LSA analysis. Moreover, the reduction of the N400 for the high-expectancy sentences, relative to the low-expectancy sentences, could not be explained as due to the influence (the counteract effect) of

4. Experiment 2: Passive reading

The semantic acceptability judgment may enhance the saliency of local classifier-noun mismatch and may increase the likelihood of implementing a structural reanalysis strategy (Wu et al., 2014). One may argue that the structural reanalysis is only viable when explicit semantic judgment is required for each sentence, leading to a reduction of N400 response to the incongruent word in the high-vs. low-expectancy context. To test this assumption, the same sentences were given to another two independent groups of participants who were asked to read sentences just for comprehension (Exp. 2) or to actively predict the upcoming words and occasionally verify the compatibility between the expected and the actual incoming words (Exp. 3). In neither tasks was the reader explicitly asked to conduct semantic judgment. The difference between Exp. 2 and Exp. 3 was whether a strong effort of prediction is demanded for sentence comprehension. If the structural reanalysis strategy is initiated only when explicit congruency judgment is required during sentence reading, we would predict that both Exp. 2 and Exp. 3 show an increased N400 in response to local mismatch for the high-vs. the low-expectancy condition, due to a resort of coercing the incongruent word into the contextual representation of a verb-argument structure. However, if the initiation of structural reanalysis strategy is not related with the congruency judgment but is dependent on the task demand on prediction, we would predict that the effort of integrating an incongruent noun as the local object in the verb-argument structure would be minimal in Exp. 3. Instead, if the reader is motivated to actively use the contextual information and predict an alternative argument, the difficulty in integrating the incongruent word can be decreased to a similar level for the low-expectancy context and the high-expectancy context. Therefore, comparable N400 responses are likely to occur on the high- and the low-expectancy incongruent words.

4.1. Participant

Twenty-two native Chinese students from Peking University participated in Exp. 2. Data from four participants were excluded due to excessive artifacts, resulting in 10 males and 8 females (Mean = 21.2, ranging from 18 to 26). All had normal or corrected-to-normal vision. None of them suffered from any neurological or psychiatric disorders. This study was approved by the Ethics Committee of the School of Psychological and Cognitive Sciences at Peking University.

4.2. Materials and experimental procedures

The materials, the procedures in EEG acquisition and data analysis were exactly the same as in Exp. 1. Before the EEG recording, the participants were informed to read sentences attentively for comprehension and to finish a reading comprehension test after the recording session. A word recognition test was administered to each participant after the recording session. A hundred and sixty words, among which 80 occurred as the target object noun and 80 were never shown in the experiment, were presented to each participant in a random order. They were asked to circle the words which had occurred in the experiment. All occurred words appeared at the local object position in the critical sentences. The
preprocessing of EEG data revealed an average of 84.4% artifact-free trials (including 38.1, 37.7, 37.8 and 38.1 trials for each condition).

4.3. Result

4.3.1. Behaviors: word recognition test

On average, participants falsely alarmed to 5.2 out of the 80 unseen words while correctly recognizing 30.6 out of the 80 experiment words in the recognition test (6.5% vs. 38.3%), suggesting that they were able to discriminate between words they had seen and those they never came across in the experiment (Federmeier et al., 2007; Wlotko and Federmeier, 2007). The proportion of words correctly recognized over the critical conditions was subjected to repeated measures ANOVA with contextual expectancy (high vs. low) and congruency (congruent vs. incongruent, Table 2). The main effect of contextual expectancy was significant, F (1, 17) = 15.25, p < 0.005, suggesting that participants recognized words better in sentences with higher contextual expectancy (on average 17.3 out of 40) than those in sentences with lower expectancy (on average 13.3 out of 40). Neither the congruency effect nor the interaction between the contextual expectancy and congruency reached significance, F < 1.

4.3.2. ERPs

4.3.2.1. N400: 300–450 ms. The ANOVA revealed a significant main effect of local congruency in the midline, F (1, 17) = 21.81, p < 0.001, and in the lateral analysis, F (1, 17) = 13.55, p < 0.005, suggesting a stronger N400 on the incongruent relative to the congruent noun (−1.10 μV on the midline, −0.86 μV on the lateral). This congruency effect interacted with electrode in the midline, F (5, 85) = 13.51, p < 0.001, and in the lateral analysis, F (2, 34) = 10.88, p < 0.005, suggesting that this effect was more pronounced in the centro-posterior region (see Fig. 2). The main effect of contextual expectancy was significant in the midline, F (1, 17) = 13.90, p < 0.005, in the lateral, F (1, 17) = 9.95, p < 0.01, suggesting that the high-expectancy condition elicited a reduced N400 than low-expectancy condition (−1.26 μV on the midline, −0.90 μV on the lateral electrodes).

Although the two-way interaction between contextual expectancy and local congruency was not significant, F < 1, the three-way interaction between contextual expectancy, local congruency and electrode was marginally significant in the midline, F (1, 17) = 2.76, 0.05 < p < 0.1. Separate analysis revealed that, relative to the low-expectancy condition, the high-expectancy condition elicited a stronger central and posterior N400 (Fig. 2) on congruent object noun (maximally on CPz, −2.32 μV, F (1, 17) = 14.16, p < 0.005 and lateral posterior region: 1.28 μV, F (1, 17) = 8.34, p < 0.05) and a stronger N400 response on the medial posterior electrodes on the incongruent noun (on Pz, −0.97 μV, F (1, 17) = 3.96, p < 0.05, POz, −0.94 μV, F (1, 17) = 3.87, p < 0.05).

4.3.2.2. Late positivity: 450–800 ms. The ANOVA revealed no effect of congruency, Fs < 1, contextual expectancy, Fs < 1, or interaction of the two, ps > 0.1. However, there was a significant three-way interaction between contextual expectancy, local congruency and hemisphere, F (1, 17) = 4.59, p < 0.05. Separate analysis on the high-expectancy condition revealed that, relative to the congruent noun, the incongruent noun elicited a stronger late positivity in the left hemisphere (0.86 μV), F (1, 17) = 5.48, p < 0.05, but not in the right hemisphere, F < 1; no congruence effect was shown for the low-expectancy conditions, Fs < 1. Separate analysis on the congruent word revealed that, relative to the high-expectancy condition, the low-expectancy condition elicited a stronger late positivity in the left hemisphere, F (1, 17) = 3.31, p < 0.05 (1.01 μV in the lateral), but not in the right hemisphere, F < 1; no contextual effect was found on the incongruent noun, F < 1.

5. Discussion

In this experiment, participants were asked to read sentences for comprehension alone. Similar to Exp. 1, relative to the low-expectancy context, the high-expectancy context elicited a reduced N400 on the incongruent noun, although this effect was more restricted to the medial and posterior regions. This finding suggested that the effort of integrating an incongruent noun into a context was reduced given stronger contextual expectancy and perhaps given the associated increase in its semantic similarity to the context-expectated word. This finding is inconsistent with the view that the incongruent word is forced to be integrated into a subject-verb-argument representation as a direct object, which would produce a larger N400 for the high- vs. low-expectancy on the incongruent noun. However, it is most likely that the initiation of a structural realanalysis is facilitated by the highly predictive context, assigning an alternative role to the object noun and releasing the effort of integrating the incongruent noun into the verb-argument structure. The availability of the structural realanalysis and perhaps the increased semantic similarity reduced N400 when the contextual constraint was high. Importantly, the observation of an N400 reduction in response to the high-expectancy context even without an explicit emphasis on the congruency judgment suggests that, whether the reader’s attention is guided to the local congruency or not, a strong global contextual expectation facilitates a structural realanalysis strategy when the reader encounters a local mismatch. In Exp. 3, we verified whether the local integration effort can be facilitated by an active prediction.

6. Experiment 3: Active prediction

6.1. Participants

Sixteen native Chinese students in Peking University (including 7 males and 9 females, Mean age = 21.8, ranging from 18 to 24) who did not participate in the previous experiments were recruited in Exp. 3. All participants had normal or corrected-to-normal vision. None of them suffered from any neurological or psychiatric disorder. This study was approved by the Ethics Committee of the School of Psychological and Cognitive Sciences at Peking University.

6.2. Materials and experimental procedures

The critical sentences and the procedures were the same in Exp. 3 as in Exps. 1 and 2, except that the participants were encouraged to predict the upcoming word as far as they can during sentence reading. In addition, to check whether the participants made predictions during reading, twenty-four new congruent sentences with the same structure as the critical ones were included as “catch trials”. In these sentences, the sentential context highly constrained an object noun position, or the word position immediately following the object noun, or the sentence-final position (the average cloze probability toward a particular word given these contexts was 64.3%, e.g. Xie Bin planted tall trees and grew a hedge fence in his yard). The actual words used in these positions were either the mostly expected words in one half sentences or unexpected but plausible ones in the other half, and were all marked laterally by asterisks (e.g. *** trees ***) during the RSVP. After these sentences, a

<table>
<thead>
<tr>
<th>Condition</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Seen High expectancy, Congruent</td>
<td>46.0%</td>
<td>19.0%</td>
</tr>
<tr>
<td>High expectancy, Incongruent</td>
<td>40.5%</td>
<td>18.5%</td>
</tr>
<tr>
<td>Low expectancy, Congruent</td>
<td>24.5%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Low expectancy, Incongruent</td>
<td>32.0%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Unseen</td>
<td>13.0%</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Table 2

Mean and standard deviation of the percentage of hit responses for items that had been seen in each critical condition and false alarmed responses for items that had not been seen.
question mark was presented for 2000 ms at the center of the screen and the participants were asked to judge whether the marked words were the most appropriate word following the highly-constraining sentence context, by pressing a left or right button on the joystick. The hand-button assignment was counterbalanced across participants. In total each participant read 244 sentences. Before the formal test, participants received 26 practice trials, with 2 sentences requiring a response. A word recognition test was administered to each participant after the recording (with the procedure same as in Exp. 2). The EEG acquisition and data analysis were the same as in Exp. 1 and 2. A cross-experiment ANOVA was implemented on both N400 and late positivity by taking experiment as a between-participant factor, and contextual expectancy, local congruency and topographic factors as within-participant factors. On average, there were 94.7% artifact-free trials (including 42.5, 42.4, 42.7 and 43 trials for each condition).

7. Result

7.1. Behaviors: Word recognition test

Participants were capable of distinguishing words that had been seen and those that had not been seen. On average, participants false alarmed to 4.3 of the 80 unseen words and correctly recognized 38.6 out of the 80 experimental words (5.3% vs. 48.2%). Table 2 showed recognition accuracy over experimental conditions. The ANOVA over contextual expectancy and congruency between adjective and noun showed a significant main effect of congruency, F (1, 15) = 59.24, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (2.68 μV in the midline, 2.23 μV in the lateral electrodes). The local congruency interacted with electrode in the midline, F (5, 75) = 14.19, p < 0.001, and with region in the lateral analysis, F (2, 30) = 5.93, p < 0.05, suggesting that this N400 effect was maximal in the central and posterior regions (see Fig. 3). The local congruency also interacted with hemisphere in the lateral analysis, F (1, 15) = 5.38, p < 0.05, suggesting that this effect was larger in the right hemisphere (see Fig. 3). The effect of contextual expectancy was significant in the midline, F (1, 15) = 18.68, p < 0.005, and in the lateral analysis, F (1, 15) = 17.23, p < 0.005, suggesting that the high-expectancy condition elicited a reduced N400 response as compared with the low-expectancy condition (1.51 μV in the midline, 1.56 μV in the lateral electrodes). The local congruency interacted with electrode in the midline, F (1, 15) = 45.63, p < 0.001, and in the lateral analysis, F (1, 15) = 31.00, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (−2.68 μV in the midline, −2.23 μV in the lateral electrodes). The local congruency interacted with electrode in the midline, F (1, 15) = 45.63, p < 0.001, and in the lateral analysis, F (1, 15) = 31.00, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (−2.68 μV in the midline, −2.23 μV in the lateral electrodes). The local congruency interacted with electrode in the midline, F (1, 15) = 45.63, p < 0.001, and in the lateral analysis, F (1, 15) = 31.00, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (−2.68 μV in the midline, −2.23 μV in the lateral electrodes).

7.1.1. Behaviors: Prediction validation

On average, participants correctly guessed 19.9 (82.9%) out of 24 target words in the “catch-trial” sentences (ranging from 19 to 22). This finding ensured that the participants were making predictions during online sentence reading.

7.1.2. ERPs

7.1.2.1. N400: 300–450 ms. The ANOVA revealed a significant effect of local congruency in the midline, F (1, 15) = 45.63, p < 0.001, and in the lateral analysis, F (1, 15) = 31.00, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (−2.68 μV in the midline, −2.23 μV in the lateral electrodes). The local congruency interacted with electrode in the midline, F (1, 15) = 45.63, p < 0.001, and in the lateral analysis, F (1, 15) = 31.00, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (−2.68 μV in the midline, −2.23 μV in the lateral electrodes). The local congruency interacted with electrode in the midline, F (1, 15) = 45.63, p < 0.001, and in the lateral analysis, F (1, 15) = 31.00, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (−2.68 μV in the midline, −2.23 μV in the lateral electrodes). The local congruency interacted with electrode in the midline, F (1, 15) = 45.63, p < 0.001, and in the lateral analysis, F (1, 15) = 31.00, p < 0.001, suggesting that the incongruent condition elicited an increased N400 as compared with the congruent one (−2.68 μV in the midline, −2.23 μV in the lateral electrodes).
hemisphere: 1.72 μV, \(F(1, 15) = 5.26, p < 0.05\) and right hemisphere: 2.26 μV, \(F(1, 15) = 15.58, p < 0.005\). The analysis on the incongruent noun revealed a decreased negative response for the high-expectancy condition (or an increased negative response for the low-expectancy condition) in left anterior \((-0.96 \mu V, F(1, 15) = 3.75, 0.05 < p < 1)\), right anterior \((-1.40 \mu V, F(1, 15) = 6.44, p < 0.05)\) and right central regions \((-1.28 \mu V, F(1, 15) = 5.10, p < 0.05)\).

7.1.2.2. Late positivity: 450–800 ms. The ANOVA did not reveal a significant effect of local congruency, \(F_s < 1\), but a significant two-way interaction between local congruency and electrode in the midline, \(F(1, 15) = 4.37, p < 0.05\). The congruency effect was only significant on Fz, \(F(1, 15) = 4.09, p < 0.05\), suggesting that the incongruent condition elicited a stronger frontal positivity as compared with the congruent one \((1.12 \mu V \text{ in the midline and } 1.20 \mu V \text{ in the lateral electrode})\). The effect of contextual expectancy was significant in the midline, \(F(1, 15) = 4.51, p < 0.05\), and in the lateral analysis, \(F(1, 15) = 7.74, p < 0.05\), suggesting that the high-expectancy condition elicited a stronger positive response as compared with the low-expectancy condition \((0.99 \mu V \text{ in the midline and } 1.18 \mu V \text{ in the lateral electrode})\). The lateral analysis revealed a significant three-way interaction between contextual expectancy, local congruency and hemisphere, \(F(1, 15) = 4.61, p < 0.05\), and a significant four-way interaction between contextual expectancy, local congruency, hemisphere and region, \(F(1, 15) = 3.93, p < 0.05\). Separate analysis on the high-expectancy condition revealed a congruency effect in the left hemisphere, \(F(1, 15) = 5.84, p < 0.05\), which was largest in the left anterior region \((1.38 \mu V, F(1, 15) = 5.68, p < 0.05\), suggesting a left-lateralized, anteriorly-maximized positivity elicited by the incongruent noun relative to the congruent noun. The effect of contextual expectancy was only observed on the incongruent noun, with the effect being larger in the left, \(F(1, 15) = 11.15, p < 0.01\), than the right hemisphere, \(F(1, 15) = 8.81, p < 0.05\), and being largest in the left anterior regions \((1.81 \mu V, F(1, 15) = 9.32, p < 0.05)\), suggesting that the high-expectancy condition elicited a left-anteriorly-maximized positivity as compared with the low-expectancy condition. Although the analysis in the 450–800 ms time window did not reveal any significant effect of contextual expectancy, \(F_s < 1\), relative to the low-expectancy condition, the high-expectancy condition tended to elicit a positivity in the 650–800 ms time window, \(F(1, 15) = 4.10, 0.05 < p < 0.1\) on the lateral electrodes (see Fig. 3).

7.1.2.3. Cross-task comparisons

7.1.2.3.1. \(N400: 300–450\) ms. Given that a same set of material was used between experiments, we conducted an ANOVA based on altogether 51 participants, taking contextual expectancy, local congruency and topographic factors as within-participant factors and experiment as a between-participant factor. The result revealed a significant effect of local congruency in the midline, \(F(1, 48) = 36.89, p < 0.001\), and in the lateral analysis, \(F(1, 48) = 60.03, p < 0.001\), suggesting a stronger N400 elicited by the incongruent noun relative to the congruent noun. There was a significant interaction between local congruency and experiment in the midline, \(F(2, 48) = 7.61, p < 0.005\), and in the lateral analysis, \(F(2, 48) = 6.11, p < 0.005\). These findings suggested that the N400 effect elicited by incongruent relative to the congruent condition was larger in Exp. 3 \((−2.68 \mu V \text{ in the midline; } −0.96 \mu V \text{ in the lateral})\) relative to Exp. 1 \((−1.28 \mu V \text{ in the midline; } −0.86 \mu V \text{ in the lateral})\) and Exp. 2 \((−1.10 \mu V \text{ in the midline; } −2.22 \mu V \text{ in the lateral})\).

There was also a significant effect of contextual expectancy in the midline, \(F(1, 48) = 36.89, p < 0.001\), and in the lateral analysis, \(F(1, 48) = 34.97, p < 0.001\). But no interaction between contextual expectancy and experiment was observed, \(F_s < 1\). In all the experiments, the low-expectancy conditions elicited a larger N400 response relative to the high-expectancy conditions, although this effect tended to be larger in Exp. 3 \((−1.52 \mu V \text{ in the midline; } −0.90 \mu V \text{ in the lateral})\).
There was a significant interaction between contextual expectancy and local congruency in the midline, $F(1, 48) = 6.46, p < 0.05$, in the lateral analysis, $F(1, 48) = 2.89, 0.05 < p < 0.1$. Separate analysis revealed that, the increased N400 in the low-expectancy vs. high-expectancy condition was more pronounced in the congruent ($F(1, 48) = 34.25, p < 0.001$ in the midline; $F(1, 48) = 24.17, p < 0.001$ in the lateral) than in the incongruent condition ($F(1, 48) = 5.36, p < 0.05$ in the midline; $F(1, 48) = 7.41, p < 0.01$ in the lateral).

Importantly, a five-way interaction between contextual expectancy, local congruency, experiment, region and hemisphere was demonstrated in the lateral analysis, $F(4, 96) = 3.39, p < 0.05$. This finding suggested that the size of the N400 reduction elicited by the high-expectancy relative to the low-expectancy condition was modulated by experimental demand to different degrees on the congruent and the incongruent noun (Fig. 6). We calculated the N400 effect by subtracting the magnitude of ERP responses to the high-from that to the low-expectancy condition in each region of interest for the congruent and the incongruent noun. The ANOVA on the congruent noun, which took electrode as within-participant factor and experiment as between-participant factor, revealed a significant effect of experiment in the left anterior, $F(2, 48) = 3.99, p < 0.05$, the left central, $F(2, 48) = 2.70, 0.05 < p < 0.1$ and the left posterior region, $F(2, 48) = 4.26, p < 0.05$, suggesting that the reduction of N400 effect in the high-than the low-expectancy condition was more pronounced in Exp. 3 relative to Exps. 1 and 2, and tended to be larger in Exp. 1 than in Exp. 2, in the left hemisphere (left anterior: $0.83 \mu V, -0.65 \mu V, -1.89 \mu V$; left central: $1.57 \mu V, -1.13 \mu V, -2.09 \mu V$, and left posterior: $1.31 \mu V, -1.18 \mu V, -2.40 \mu V$ for Exps. 1, 2, and 3, respectively, see Figs. 4 and 6).

In contrast, the ANOVA on the incongruent noun revealed an effect of experiment in the right anterior, $F(2, 48) = 3.29, p < 0.05$, and the left posterior region, $F(2, 48) = 3.49, p < 0.05$. On the left posterior region, the reduction of the N400 effect for the high-expectancy relative to the low-expectancy condition was less pronounced in Exp. 3 than in Exps. 1 and 2 ($-0.73 \mu V, -0.88 \mu V, -0.21 \mu V$ for Exps 1, 2, and 3, respectively, see Fig. 5). On the right-anterior region, the negativity elicited by the low-vs. the high-expectancy condition was more pronounced ($-0.85 \mu V, -0.69 \mu V, -1.79 \mu V$ for the three tasks) in Exp. 3 as compared with Exps 1 and 2. It is seen from Fig. 5 that the larger anterior negativity for the low-expectancy condition was due to an early influence of late positivity for the high-expectancy condition which was maximized in the anterior region.

7.1.2.3.2. The late positivity effect. The ANOVA revealed a significant effect of contextual expectancy in the midline, $F(1, 48) = 3.12, 0.05 < p < 0.1$, and in the lateral analysis, $F(1, 48) = 4.33, p < 0.05$, suggesting that the high-expectancy elicited a stronger positivity as compared with the low-expectancy condition ($0.42 \mu V$ in the midline and $0.43 \mu V$ in the lateral analysis). The contextual expectancy interacted with experiment in the lateral analysis, $F(2, 48) = 4.14, p < 0.05$, suggesting the positivity effect elicited by the high-expectancy condition was only significant in Exp. 3 ($-1.19 \mu V$).

Although there was no main effect of local congruency, $F(1, 48) = 2.09, p > 0.1$ in the midline, or $F(1, 48) = 1.95, p > 0.1$ in the lateral analysis, the local congruency interacted with hemisphere in the lateral sites, $F(1, 48) = 9.19, p < 0.005$. A significant effect of local congruency was only shown in the left hemisphere, $F(1, 48) = 3.85, p < 0.05$, suggesting that across tasks, the incongruent condition elicited a larger left-lateralized positivity effect ($0.56 \mu V, 0.49 \mu V, 0.68 \mu V$ for Exps 1, 2, and 3, respectively).

There was a significant interaction between contextual expectancy and local congruency, $F(1, 48) = 4.55, p < 0.05$ in the lateral analysis. Separate analysis revealed a significant main effect of local congruency for the high-expectancy condition, $F(1, 48) = 7.78, p < 0.01$, but not for the low-expectancy condition, $F < 1$. This finding suggested that, relative to the congruent noun, the incongruent noun elicited a larger

Fig. 4. Difference waveforms on 9 representative electrodes, time-locked to the object noun from –200 ms pre-onset to 800 ms post-onset, between low-expectancy, congruent and high-expectancy congruent condition, for the judgment, the passive reading and the active reading task.
positivity effect when preceded by the high-expectancy context (0.76 μV). Moreover, there was a significant effect of contextual expectancy on the incongruent noun, $F (1, 48) = 11.30, p < 0.005$, but not on the congruent noun, $F < 1$. The finding suggested that, relative to the low-expectancy condition, the high-expectancy condition elicited a larger positivity on the incongruent noun (0.89 μV).

There was a five-way interaction between expectancy, congruency, hemisphere, region and experiment, $F (4, 96) = 3.83, p < 0.05$. To examine how the stronger positive response elicited by the high-expectancy vs. the low-expectancy incongruent condition was modulated by experimental task, we calculated the positivity effect by subtracting the magnitude of ERPs to the low-expectancy condition from that to the high-expectancy condition in each region of interest in the incongruent condition. The ANOVA revealed a significant effect of experiment in the left central, $F (2, 48) = 4.10, p < 0.05$, the right anterior, $F (2, 48) = 3.75, p < 0.05$, and the right posterior region, $F (2, 48) = 2.66, 0.05 < p < 0.1$, suggesting that the positivity effect was larger in Exp. 3 than in Exps. 1 and 2 (see Fig. 5).

7.2. Discussion

In Exp.3, we attempted to increase the reader’s motivation of reading by asking them to actively anticipate the upcoming words and to verify the compatibility between the anticipated and the actual word in the sentence. As is shown in Fig. 6, the N400 amplitude was much less negative in the prediction task than in the other two tasks, as was reflected by the main effect of experiment in the cross-task analysis, $F (1, 48) = 6.01, p < 0.05$, in the midline, $F (1, 48) = 3.75, p < 0.05$, and in the right posterior region, $F (2, 48) = 2.66, 0.05 < p < 0.1$, suggesting that the positivity effect was larger in Exp. 3 than in Exps. 1 and 2 (see Fig. 5).

The finding in the active prediction task was inconsistent with the view that the target noun is integrated as a direct object of the verb. This view would have predicted a stronger N400 for the high-than for the low-expectancy condition. Moreover, it was also inconsistent with the previous two experiments which revealed a reduced N400 for the high relative to the low-expectancy condition. The comparable N400 responses between the high and the low-expectancy incongruent noun suggested that a structural reanalysis strategy was viable to reduce the effort of semantic integration on the incongruent noun, given that the reader had sufficient motivation to make forward expectation towards an upcoming word during sentence reading. The motivation of expectation could modulate the level of reduction in the semantic integration difficulty. In the previous two tasks, the structural reanalysis is mainly viable for the high-expectancy condition, such that the semantic integration difficulty was much more reduced for the high-relative to the low-expectancy condition. However, given that the active prediction
task encouraged the readers to use the contextual information to restructure the sentence, the viability of the structural reanalysis strategy could be as strong in the low-expectancy as in the high-expectancy condition, resulting in an equally low level of integration in both conditions on the incongruent noun. Here the pattern of N400 for different expectancy conditions cannot easily be accommodated by the semantic similarity between the incongruent noun and the context-expected words. It is unclear how the potential effect of semantic similarity on the access to the expected word could be modulated by task demand.

8. General discussion

8.1. Structural reanalysis as a way to mitigate the semantic integration difficulty

By manipulating the local congruency between adjective and object noun in a sentence with high- or low-expectancy towards the noun and by manipulating the task demand during sentence reading, we tested if the structural reanalysis would be employed as a way to mitigate the difficulty in the semantic integration of incongruent word into the sentence context. In particular, we hypothesize that, the comprehension system would initiate a structural reanalysis and reassign a modifier role to the object noun to make sense of the sentence when the mismatching noun is encountered. Consistent with this hypothesis, but inconsistent with view that the object noun was coerced to be integrated as a direct object into the verb-argument structure, we found the incongruent noun elicited a reduced N400 for the high-expectancy sentences than for the low-expectancy sentences in the acceptability judgment and passive reading task, and comparable N400 responses for the two conditions in the active prediction task. The semantic similarity between the incongruent target word and the context-expected word, which to a certain extent covaried with contextual expectancy, could explain the reduced N400 for the high-vs. the low-expectancy sentences in Exps. 1 and 2, but does not seem to generate a clear prediction for the equal N400 between expectancy conditions in Exp. 3. Taken together, the comprehension system is sensitive to the outcome of the structural reanalysis triggered by the local AP-noun mismatch, which is more viable in the high-expectancy than in the low-expectancy condition when no explicit prediction demand is exerted, and is equally viable in both high- and low-expectancy conditions when active prediction is demanded.

Moreover, we found differential task effects on the N400 facilitation in the high-vs. the low-expectancy condition on the congruent and the incongruent noun. On the congruent noun, we observed the largest facilitation of N400 in the prediction task than the other two tasks. On the incongruent noun, we observed the largest facilitation of N400 in the judgment and passive reading task than the prediction task. Such differential task modulation is possibly because the active prediction facilitated the access to the congruent noun preceded by the high-expectancy context and mitigated the effort of integrating the incongruent noun preceded by the low-expectancy context (see Fig. 6). These findings suggest distinct contextual mechanisms underlying the processing of the most expected word and the locally-mismatching word in a hierarchical structure, with differential neurocognitive processes involved. While the contextual representation pre-activates the lexical input in the congruent condition, it offers an opportunity to reinterpret the incongruent word with a possible alternative structure (Delong et al., 2014; Van Petten and Luka, 2012).
8.2. Late positivity, coordination of multiple constraints, and task effect

Late positivities were shown on object nouns mismatching the local constraint and varied in the topographic distribution as a function of the contextual expectancy and task demand. For the high-expectancy context, the incongruent word elicited an anteriorly-distributed positivity across tasks, which was more left-lateralized in passive reading and active prediction; for the low-expectancy context, the incongruent word elicited a centro-posterior positivity in judgment task. The functional dichotomy of the anterior-vs. posterior-maximized positivity in response to lexical semantic disruption has been revealed. Delong et al. (2014) and Kuperberg et al. (2020) manipulated the predictability and possibility of a word as continuation of a sentence context. They observed two types of post-N400 positivity which varied in the topographic distribution: an anterior (frontal) positivity to the unpredictable but possible word and a centro-posterior positivity to the impossible word.

The anterior positivity in the high-expectancy condition is consistent with the finding that this positivity is typically present when a word continuation disconfirms a strong prediction from the contextual constraint (Federmeier et al., 2007, 2010; Kuperberg et al., 2020; Wlotko and Federmeier, 2012). For example, in Kuperberg et al. (2020), the critical word that violated a strongly-constraining context (e.g., The lifeguards received a report of a shark right near the beach. Their immediate concern was to prevent any incidents in the sea. Hence they cautioned the trainees ...) elicited a stronger anterior positivity (recorded at the prefrontal channel) than the word violating a weakly constraining context (e.g., Eric and Grant received the news late in the day. They mulled over the information, and decided it was better to act sooner rather than later. Hence they cautioned the trainees ...), or the word impossible to be integrated into the context (e.g., when trainees in the first strongly-constraining context was replaced by drawer). The anterior positivity may reflect an inhibitory process, i.e., a suppression of the pre-activated lexical representation based on the prediction in face of a plausible alternative word, to minimize interference with ongoing meaning construction (Delong et al., 2014) or to update the prior situation model to a new model on the basis of new bottom-up input (Kuperberg et al., 2020). In all these studies, the critical word was unexpected and was assigned a fixed syntactic role; but this word was nevertheless a possible continu

The centro-posterior positivity in the low-expectancy condition was consistent with a positivity on the object noun mismatching the local or more distant sentential constituents in a hierarchical structure (Jiang and Zhou, 2012; Zhang et al., 2011; Zhang et al., 2011). Distinct from the positivity elicited in the anterior region, this positivity could be related with the failure to update the current situation model with the new input and could be related with processes to resolve failure in language comprehension (Kuperberg et al., 2020). This post-N400 positivity is most typically seen as reflecting an increased effort to coordinate multiple and parallel semantic processes at different syntactic levels to build an integrated sentence representation (Jiang and Zhou, 2012; Zhang et al., 2011; Zhang et al., 2011), or other processing demands in face of a semantic failure (i.e., continued analysis of a conflict between rule-based and thematic-based representations, Kuperberg, 2007; general monitoring of processing errors, Kokk and Chwilla, 2007; Van de Meerendonk et al., 2010, 2013; Vissers et al., 2006, 2010; validation of well-formedness of input, Bornkessel-Schlesewsky et al., 2011; Bornkessel-Schlesewsky and Schlesewsky, 2008; Frenzel et al., 2011; update of mental representation, Brouwer et al., 2012).

The coordination process involves the redeployment of the attentional or processing focus from the syntactic level where the semantic constraint is mismatched to other possible constraints, in order to achieve a comprehension goal relevant to the current task demand (Jiang and Zhou, 2012; Zhang et al., 2011; Zhang et al., 2011). The common feature between these studies is that the possibility of structural reanalysis on the critical mismatching word is low. For example, in Zhang et al. (2011), the object noun of a German sentence was case-marked and structurally unambiguous. In Jiang and Zhou (2012), the object noun could be ambiguous but the contextual expectancy was low (39.2%), making the structural reanalysis less viable. In face of local incongruence, the system may redeploy the attentional or processing focus from the mismatched local relation to the higher-level verb-noun constraint in searching for partially coherent information to mitigate the local difficulty, resulting in a larger late centro-posteriorly distributed positivity in incongruent conditions than congruent ones (Egidi and Caramazza, 2016; Zhang et al., 2011).

The attempt to initiate a coordination process could be susceptible to the task demand at hand and may therefore reflect a task-related process. Jiang et al. (2009) compared the ERP responses to the universal quantifier dou preceded by a singular entity (quantifier mismatch, where dou was impossible to continue) with dou preceded by a plural entity (quantifier match, where dou can be predicted but not necessary). The quantifier mismatch elicited a positivity on dou only when readers were asked to judge the plausibility of the sentence but a sustained negativity when the participants passively read sentence for comprehension, suggesting that the initiation of coordination is subjective to the task demand, with acceptability judgment demanding higher effort of coordination. Similarly here, the attempt to initiate coordination on the incongruent noun was modulated by the task demand. The centro-posterior positivity was evident when readers verified the correctness of an actual input as a continuation of the sentence (Exps. 1 and 3). In the passive reading task (Exp. 2), the demand of acceptability judgment was low and no coordination process was initiated, rendering the positivity equally large. The task-related nature of the positivity in the post-N400 time window is consistent with the idea that the coordination process underlying the late positivity may not be linguistic-specific and may reflect a domain-general process which is moderated by the availability of the predictive context and the instruction to encourage the reader/viewer to use the context (Nieuwland, 2019; Sassenhagen and Bornkessel-Schlesewsky, 2015; Sassenhagen et al., 2014).
In three ERP experiments, the present study examined if and how the processing of a semantically incongruent noun can be affected by the availability of an alternative representation (i.e., reassigning a modifier role to this mismatching noun). The availability of structural alternative was manipulated by the strength of the contextual expectancy and reader’s motivation to actively use the contextual information. The incongruent noun elicited a reduced N400 in the high-relative to the low-expectancy condition in judgment and passive reading tasks, and elicited equal N400s in the two conditions in the active prediction task. Note that, here the contribution of context-driven structural reanalysis and the contribution of the possibly covaried semantic similarity (or association) between the target word and the context words or the context-expected word to the contextual modulation of N400 could not be fully teased apart, warranting further research (see Nieuwland, 2019 for an example). Nevertheless, the current findings suggest that the viability of structural reanalysis strategy (due to the enhanced level of contextual expectancy and possibly also due to the increased semantic similarity) can mitigate the difficulty in semantic integration and provide further evidence for the “role-dependent semantic processing hypothesis.”

Comparing several relevant studies with the current study, we argue that several factors may affect the initiation of the role-dependent analysis; among them, whether the comprehension system is dealing with a flexible structure is a major factor. When the syntactic structure is flexible (e.g., the syntactic role can be ambiguous due to the lack of case marking), the combinatorial-based semantic integration effort maybe released if the given structure is reanalyzed. In contrast, the integration effort persists when no alternative role assignment is permitted. The present study went further to show that the role-dependent analysis is driven by contextual information and is relevant to reader’s motivation. The semantic integration effort is released in the high-expectancy context when the reader is not explicitly asked to predict the upcoming words. Moreover, this effort is realized in both the high- and low-expectancy context when the reader is explicitly asked to make such a prediction.

Furthermore, the incongruent noun elicited an additional anteriorly-distributed positivity in the high-expectancy condition, which was the most pronounced in the active prediction task. It elicited a centro-posterior positivity in the low-expectancy condition, which was the most pronounced in the acceptability judgment task. These findings may suggest that the use of multiple mechanisms to resolve semantic failure depends on the interplay of contextual constraint and task instruction. The existence of an alternative structure facilitates the inhibition of a contextually-based representation. When no structural alternatives exist, an attempt to coordinate semantic processes at multiple levels of syntactic hierarchy is initiated.

In sum, the current findings demonstrate the structural reanalysis and reader’s motivation serve as alternative routes to process temporarily failed semantics and highlight the importance of hierarchical structure as a testing case to study the processing flexibility in dynamic sentence processing.

Acknowledgment

This study was supported by the grant from Natural Science Foundation of China (31971037) and by the Fundamental Research Funds for the Central Universities (22120180146). We are very grateful to Ms. Jia Li and Ms. Yi Li for their helps in data collection and analysis, and Ms. Junzhu Su and Mr. Haiyang Zhang for their helps in material generation and validation.

References

Jiang, X., Zhou, X., 2012. Multiple semantic processes at different levels of syntactic hierarchy are revealed if the given structure is reanalyzed. In contrast, the integration effort persists when no alternative role assignment is permitted. The present study went further to show that the role-dependent analysis is driven by contextual information and is relevant to reader’s motivation. The semantic integration effort is released in the high-expectancy context when the reader is not explicitly asked to predict the upcoming words. Moreover, this effort is released in both the high- and low-expectancy context when the reader is explicitly asked to make such a prediction.

Furthermore, the incongruent noun elicited an additional anteriorly-distributed positivity in the high-expectancy condition, which was the most pronounced in the active prediction task. It elicited a centro-posterior positivity in the low-expectancy condition, which was the most pronounced in the acceptability judgment task. These findings may suggest that the use of multiple mechanisms to resolve semantic failure depends on the interplay of contextual constraint and task instruction. The existence of an alternative structure facilitates the inhibition of a contextually-based representation. When no structural alternatives exist, an attempt to coordinate semantic processes at multiple levels of syntactic hierarchy is initiated.

In sum, the current findings demonstrate the structural reanalysis and reader’s motivation serve as alternative routes to process temporarily failed semantics and highlight the importance of hierarchical structure as a testing case to study the processing flexibility in dynamic sentence processing.

This study was supported by the grant from Natural Science Foundation of China (31971037) and by the Fundamental Research Funds for the Central Universities (22120180146). We are very grateful to Ms. Jia Li and Ms. Yi Li for their helps in data collection and analysis, and Ms. Junzhu Su and Mr. Haiyang Zhang for their helps in material generation and validation.

